Vulnerability of mossy fiber targets in the rat hippocampus to forebrain ischemia.
نویسندگان
چکیده
Much of the work on forebrain ischemia in the hippocampus has focused on the phenomenon of delayed neuronal death in CA1. It is established that dentate granule cells and CA3 pyramidal cells are resistant to ischemia. However, much less is known about interneuronal involvement in CA3 or ischemic injury in the dentate hilus other than the fact that somatostatin neurons in the latter lose their immunoreactivity. We combined two sensitive methods--heat-shock protein (HSP72) immunocytochemistry and a newly developed Gallyas silver stain for demonstrating impaired cytoskeletal elements--to investigate the extent of ischemic damage to CA3 and the dentate hilus using the four-vessel-occlusion model for inducing forebrain ischemia. HSP72-like immunoreactivity was induced in neuronal populations previously shown to be vulnerable to ischemia. In addition, a distinct subset of interneurons in CA3 was also extremely sensitive to ischemia, even more so than the CA1 pyramidal cells. These neurons are located in the stratum lucidum of CA3 and possess a very high density of dendritic spines. In silver preparations, they were among the first to be impregnated as "dark" neurons, before CA1 pyramidal cells; microglial reaction was also initiated first in the stratum lucidum of CA3. Whereas CA1 damage was most prominent in the septal half of the hippocampus, hilar and CA3 interneuronal damage had a more extensive dorsoventral distribution. Our results also show a far greater extent of damage in hilar neurons than previously reported. At least four hilar cell types were consistently compromised: mossy cells, spiny fusiform cells, sparsely spiny fusiform cells, and long-spined multipolar cells. A common denominator of the injured neurons in CA3 and the hilus was the presence of spines on their dendrites, which in large part accounted for the far greater number of mossy fiber terminals they receive than their non-spiny neighbors. We suggest that the differential vulnerability of neuronal subtypes in these two regions may be attributed to their extremely dense innervation by the mossy fibers and/or the presence of non-NMDA receptor subtypes that are highly permeable to calcium. In addition, early impairment of these spiny CA3 cells and hilar neurons after ischemia may be causal to delayed neuronal death in the CA1 pyramidal cells.
منابع مشابه
اثر عصاره الکلی سیاهدانه بر هیپوکمپ در موش صحرایی با صرع لب گیجگاهی
Background and Objective: Pathologically, temporal lobe epilepsy is hallmarked with neuronal degeneration in some areas of hippocampus and mossy fiber sprouting in dentate area. Considering some evidences on neuroprotective and antioxidant activity Nigella sativa (NS), this study was undertaken to evaluate the preventive effect of NS on structural changes in hippocampus of kainate-epileptic rat...
متن کاملاثر استیل آل کارنیتین در جلوگیری از تحلیل نورونهای هیپوکمپ و جوانه زدن فیبرهای خزهای در مدل تجربی صرع گیجگاهی در موش صحرایی
Background & Aims : Temporal lobe epilepsy is due to structural and metabolic changes in hippocampus including marked degeneration of neurons. Considering some evidences on antiepileptic and neuroprotective activity of acetyl L carnitine (ALC), this study was undertaken to evaluate the preventive effect of ALC on structural changes in hippocampus in an experimental model of temporal lobe ep...
متن کاملThe effect of silymarin on prevention of hippocampus neuronal damage in rats with temporal lob epilepsy
Background and Objective: Temporal lobe epilepsy is hallmarked with neuronal degeneration in some areas of hippocampus and mossy fiber sprouting in dentate area. Considering some evidences on neuroprotective and antioxidant activity of silymarin (SM), this study was undertaken to evaluate the preventive effect of this agent on structural changes in hippocampus of kainate-epileptic rats. Materia...
متن کاملADAR2-Dependent RNA Editing of AMPA Receptor Subunit GluR2 Determines Vulnerability of Neurons in Forebrain Ischemia
ADAR2 is a nuclear enzyme essential for GluR2 pre-mRNA editing at Q/R site-607, which gates Ca2+ entry through AMPA receptor channels. Here, we show that forebrain ischemia in adult rats selectively reduces expression of ADAR2 enzyme and, hence, disrupts RNA Q/R site editing of GluR2 subunit in vulnerable neurons. Recovery of GluR2 Q/R site editing by expression of exogenous ADAR2b gene or a co...
متن کاملAnti-ischemic Effect of Nigella sativa L. Seed in Male Rats
The anti-ischemic effect of aqueous and ethanolic extracts of Nigella sativa L. seed was studied using a four-vessel occlusion model in rats. The ischemia was evaluated by optical and transmission electron microscopy. After 20 min of forebrain ischemia, agents were administered intraperitoneally after reperfusion. Both extracts comprised an alkaloid. In ischemic rats, the aqueous (1 g/kg) and e...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 13 9 شماره
صفحات -
تاریخ انتشار 1993